Sodium hydrosulfide attenuates cerebral ischemia/reperfusion injury by suppressing overactivated autophagy in rats
نویسندگان
چکیده
Ischemic stroke is a leading cause of death and disability worldwide, and autophagy may be involved in the pathological process of cerebral ischemia/reperfusion injury. Hydrogen sulfide (H2S) is an endogenous gasotransmitter with protective effects against multiple diseases. Here, we tested the effect of H2S on cerebral ischemia/reperfusion injury in rats. Sodium hydrosulfide (NaHS), an H2S donor, improved neurological function and reduced the size of the infarcts induced by transient middle cerebral artery occlusion (MCAO) followed by reperfusion in rats. NaHS treatment reduced the lactate dehydrogenase (LDH) activity in the serum (a marker of cellular membrane integrity) and the expression of cleaved caspase-3 (a marker for apoptosis) in the brains of MCAO rats. We also found that autophagy was overactivated in the brains of MCAO rats, as indicated by an increased ratio of LC3 II to I, decreased expression of p62, and transmission electron microscope detection. NaHS treatment significantly inhibited the autophagic activity in the brains of MCAO rats. Furthermore, PC12 cells were subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) to mimic MCAO in vitro. We found that NaHS treatment reduced cellular injury and suppressed overactivated autophagy induced by OGD/R in PC12 cells. An autophagy stimulator (rapamycin) eliminated the protective effect of NaHS against LDH release and caspase-3 activity induced by OGD/R in PC12 cells. An autophagy inhibitor (3-methyladenine, 3-MA) also reduced the cellular injury induced by OGD/R in PC12 cells. In conclusion, the results indicate that overactivated autophagy accelerates cellular injury after MCAO in rats and that exogenous H2S attenuates cerebral ischemia/reperfusion injury via suppressing overactivated autophagy in rats.
منابع مشابه
Candesartan Attenuates Ischemic Brain Edema and Protects the Blood–Brain Barrier Integrity from Ischemia/Reperfusion Injury in Rats
Background: Angiotensin II (Ang II) has an important role on cerebral microcirculation however, its direct roles in terms of ischemic brain edema need to be clarified. This study evaluated the role of central Ang II by using candesartan, as an AT1 receptor blocker, in the brain edema formation and blood-brain barrier (BBB) disruption caused by ischemia/reperfusion (I/R) injuries in rat. Methods...
متن کاملMethanolic leaf extract of Punica granatum attenuates ischemia-reperfusion brain injury in Wistar rats: Potential antioxidant and anti-inflammatory mechanisms
Objective(s): This study was conducted to evaluate the cerebroprotective effect of methanolic leaf extract of Punica granatum (MePG) in Wistar rats.Materials and Methods: The MePG was initially assessed for in vitro antioxidant activity, and later evaluated on LPS-induced RAW 264.7 cell line assay. Finally, the MePG was evaluated against ischemia-reperfusion (I/R) induced brain injury in Wistar...
متن کاملHydrogen sulfide treatment protects against renal ischemia-reperfusion injury via induction of heat shock proteins in rats
Objective(s): Hydrogen sulfide (H2S) attenuates ischemia-reperfusion injury (IRI) in different organs. However, its mechanism of action in renal IRI remains unclear. The present study investigated the hypothesis that H2S attenuates renal IRI via the induction of heat shock proteins (HSPs).Materials and Methods: Adult Wistar rats were subjected to unilateral renal ischemia for 45 min followed by...
متن کاملEllagic acid attenuates post-cerebral ischemia and reperfusion behavioral deficits by decreasing brain tissue inflammation in rats
Objective(s): Cerebral ischemia/reperfusion (I/R) causes brain inflammation that ultimately causes long time brain function disturbances. We aimed to evaluate the effect of ellagic acid (EA) on anxiety, depression, locomotion behaviors, blood-brain barrier (BBB) permeability, brain edema, and inflammation in male rats with cerebral I/R. Materials and ...
متن کاملProtective effects of tanshinone IIA sodium sulfonate on ischemia-reperfusion-induced myocardial injury in rats
Objective(s): This study investigated the protective effect of tanshinone IIA sodium sulfonate (TSS) on ischemia-reperfusion (I/R) induced cardiac injury, and the underlying mechanism of action. Materials and Methods:Male Sprague-Dawley rats were subjected to a 30-min coronary arterial occlusion followed by 24 hours' reperfusion. Half an hour before the left coronary artery ligation, rats were ...
متن کامل